On the Frictionless Unilateral Contact of Two Viscoelastic Bodies

نویسندگان

  • M. BARBOTEU
  • M. SOFONEA
چکیده

We consider a mathematical model which describes the quasistatic contact between two deformable bodies. The bodies are assumed to have a viscoelastic behavior that we model with Kelvin-Voigt constitutive law. The contact is frictionless and is modeled with the classical Signorini condition with zero-gap function. We derive a variational formulation of the problem and prove the existence of a unique weak solution to the model by using arguments of evolution equations with maximal monotone operators. We also prove that the solution converges to the solution of the corresponding elastic problem, as the viscosity tensors converge to zero. We then consider a fully discrete approximation of the problem, based on the augmented Lagrangian approach, and present numerical results of two-dimensional test problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Balance for Viscoelastic Bodies in Frictionless Contact

In this paper it is shown that the change in the energy for a linearly viscoelastic body (with Kelvin–Voigt type viscosity) in frictionless contact with a rigid obstacle can be accounted for by viscous losses and the work done by external forces. Thus there is no change in the energy due to impacts, unlike the case of rigid-body dynamics. The result can be extended to a wide class of dynamic vi...

متن کامل

A Perturbation Result for Dynamical Contact Problems

This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies whic...

متن کامل

A class of dynamic contact problems with Coulomb friction in viscoelasticity

The aim of this work is to study a class of nonsmooth dynamic contact problem which model several surface interactions, including relaxed unilateral contact conditions, adhesion and Coulomb friction laws, between two viscoelastic bodies of Kelvin-Voigt type. An abstract formulation which generalizes these problems is considered and the existence of a solution is proved by using Ky Fan’s fixed p...

متن کامل

Numerical Analysis of a Frictionless Contact Problem for Elastic-Viscoplastic Materials

We consider a mathematical model which describes the unilateral quasistatic contact of two elastic-viscoplastic bodies. The contact is without friction and it is modeled by the classical Signorini boundary conditions. The model consists of an evolution equation coupled with a time-dependent variational inequality. It has been shown that the variational problem of the model has a unique solution...

متن کامل

A Frictionless Contact Problem for Viscoelastic Materials

We consider a mathematical model which describes the contact between a deformable body and an obstacle, the so-called foundation. The body is assumed to have a viscoelastic behavior that we model with the KelvinVoigt constitutive law. The contact is frictionless and is modeled with the well-known Signorini condition in a form with a zero gap function. We present two alternative yet equivalent w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003